亚洲成人三区,一级毛片久久久,国产精品密蕾丝视频下载,欧美成人国产va精品日本一级

 

Organotin Catalyst Catalytic Principle

2023-04-17by admin

Organotin catalysts refer to organic compounds containing carbon-tin bonds, which can coordinate with the -NCO group of isocyanate to polarize -NCO and make isocyanate The positively charged carbon atoms in the molecule are more active and are easily attacked by the terminal hydroxyl groups of polyol oligomers. In the synthesis of polyurethane, although the tertiary amine catalyst has a certain catalytic effect on the NCO/OH reaction, it has a stronger catalytic effect on the NCO/H2O reaction. Because the influence of steric hindrance on the catalytic activity decreases with the increase of temperature, replacing the group with smaller steric hindrance with the alkyl group with larger steric hindrance can make the organotin compound have higher stability, resistance to hydrolysis and Delaying the catalytic activity, such as replacing dibutyltin with dioctyltin, can delay the catalytic effect.


Organotin catalysts are a class of catalysts used to promote chemical reactions compound. They usually consist of tin atoms bonded to one or more organic groups. A tin atom can act as a Lewis acid, meaning it can accept electrons from other molecules. This can help activate reactants and make them more reactive. Organotin catalysts are used in a variety of reactions including polymerization, crosslinking, and hydrosilylation.

The catalytic mechanism of organotin catalysts is not fully understood, but is thought to involve the formation of tin-oxygen bonds. This bond then acts as a bridge between the reactants, helping them react more easily. Organotin catalysts are often used in combination with other catalysts such as acids or bases. This can help improve the efficiency of the reaction and produce the desired product.

Organotin catalysts have many advantages over other types of catalysts. They are generally very effective and can be used in a variety of reactions. They are also relatively cheap and readily available. However, organotin catalysts can be toxic and must be used with care.

Here are some examples of organotin catalysts and the reactions they are used for:

  • Dibutyltin dilaurate (DBTL) is used for Catalyzes the polymerization of vinyl chloride into polyvinyl chloride (PVC).

  • Tributyltin oxide (TBTO) is used to catalyze the crosslinking of silicones.

  • Hexabutyltin dichloride (HBCD) is used to catalyze the hydrosilylation reaction of alkenes .

Organotin catalysts are important tools in the chemical industry. They are used in the manufacture of a variety of products including PVC, silicone and pharmaceuticals. Organotin catalysts are effective, inexpensive, and readily available. However, they can be toxic and must be used with care.


admin

主站蜘蛛池模板: 庆城县| 德阳市| 阿图什市| 招远市| 韶山市| 柘荣县| 扶风县| 阿克苏市| 苏州市| 龙口市| 迁安市| 穆棱市| 道真| 布拖县| 凤山市| 如皋市| 梅州市| 彩票| 武邑县| 凤台县| 长治市| 柘荣县| 晋江市| 灵山县| 蓬安县| 东兰县| 邵阳市| 合肥市| 广东省| 清流县| 曲沃县| 乌拉特前旗| 松原市| 沈阳市| 张家界市| 金门县| 弋阳县| 密山市| 拜泉县| 石狮市| 宣城市|